Showing posts with label resources. Show all posts
Showing posts with label resources. Show all posts

Sunday, February 11, 2018

Dauphin Island Marsh and Wetlands

Whether the Weather
Look for the weather station seen in the photo below. It is maintained by the Dauphin Island Sea Lab, along with several others in and around Mobile Bay.
What does this Station Measure?
Atmospheric measurements:
>air temperature
>relative humidity
>wind direction and speed
>air pressure
>solar radiation
>precipitation
Underwater measurements:
>water temperature
>water level
>salinity
>dissolved oxygen
>chlorophyll
>turbidity
How is the Data Used?
These data can be used in many different ways. Here are just a few examples: Researchers at Dauphin Island sea Lab might use them to better understand phenomena such as low-oxygen events that result in fish-kills in Mobile Bay. Climate scientists might input the data into a model that will predict sea level rise. It might be used to analyze hurricane strength as the storm passes the station. 


Who is NOAA?
“NOAA” stands for National Oceanic and Atmospheric Administration. The U. S. Government formed this scientific agency in 1970. It has many responsibilities, including research into Earth’s weather, climate and oceans, issuing daily weather forecasts and severe storm warnings, and providing citizens, planners, emergency managers, and policymakers with reliable information when they need it. Some NOAA offices that you may be familiar with include National Weather Service, National Marine Fisheries services, and National Ocean Service.

What is a Computer Model?
You might be familiar with whether or storm prediction models that are used very the forecasters on your local news stations. Computer models are algorithms that use the measured date to make simulations of systems. The simulations might make predictions or illustrate predictions that have already happened. 
The speed at which computers can process number has made the use of models possible on a practical level. Accuracy depends on the quality of understanding of natural processes in different systems improves, algorithms of simulating systems are all improved. The more data that goes into a model, the more precise it can be. 
The image below left shows a computer model’s prediction of storm surge from Hurricane Ivan. 
This kind of prediction is used to issue warnings to residents of areas that are expected to flood. 
The image below middle shows the measured track of Hurricane Ivan. Its landfall was 30 miles east of what was predicted. One major limitation forecasters have to work with is incomplete data coverage, especially over the oceans. Much of the needed data are only collected by data boys at a few points of the surface of the ocean. 
The image below right was created with measured data, not to make a prediction, but to illustrate the actual storm flooding from Hurricane Ivan.
Invertebrate Trail 
The invertebrate trail is an action based on the award-winning Public Broadcasting system series  “The Shape of Life.”
These plaques represent 8 different Phyla, or groups of invertebrate animals with specific body plans, from simple to complex. Each phylum appeared in the oceans during the Cambrian Period, about 530 million years ago. These plaques are designed so that students can make a rubbing of each one to study in the classroom.
The Living Marsh 
Dedicated to the Memory of Beth Ladner; 1974-1991
“ A Teacher’s Friend” Discovery hall Student 1985, 1989, 1990
Research on March Restoration at Dauphin Island Sea Lab
Salt marshes are among the most productive ecosystems on earth.
They provide food, refuge and users habitats for many animals; filter runoff that drains into our coastal waters; and buffer our coastlines from damaging storm surge. Salt marshes are declining at an alarming rate due to coastal development and erosion brought on by environmental stress.
The devices installed in the Living Marsh are called flume traps. They are part of a study designed to determine how closely the ecology of this created marsh mirrors that of a natural marsh also located on Dauphin Island (above). The flume traps sample animals that enter the vegetation to forage and hide from predators. 
Flume traps allow the animals to enter the marsh vegetation as the tide rises (A, Above center). The trap is closed at high tide (B) and as the tide goes out, fish, crabs, shrimp and other animals are collected in the net. 
When then identify and count the animals we catch in the created marsh and compare them to the animals caught in the reference marsh.
We also compare the animals that live in the mud and among the roots of the marsh grass by taking cores from the marsh bottom (below). These small animals, many of which rewire a microscope to see, including worms and small shrimp the burrow into the sediment. 
We also compare how the animals interact with each other in the retired and natural marshes. We are particularly interested in how intensely blue crabs feed on marsh periwinkles (see below) We teeter snails to the bases if marsh-grass shoots at each marsh and allow crabs to attack and eat the bait during a set period of time. We also compare the number of repaired shell cracks (signs of failed attacks by crabs) in the snail populations at each site. This allows us to compare how intensively crabs are using resources in the marsh. 
We hope this research will help us understand how new marshes develop over time and what we can do to help newly created marshes provide all of the benefits of natural salt marsh habitats. 
Above: Periwinkles climbing on marsh grass
Upper Right: Blue crab
Right: Snail tethered to marsh grass and (inset) shell scar inflicted by the blue crab. Marked by the arrow. 

2024 Apr 27, Car & Tractor Show, Tee-Ball Game, Art Museum and Sisters

Hubby and I  rode to Killen Park for the Killen Log 877 Classic Car Show which featured bikes, jeeps, classic cars, and new cars. Cahaba Shr...